The role of fibrinogen spacing and patch size on platelet adhesion under flow.

نویسندگان

  • Aurore B Van de Walle
  • Jeffrey Fontenot
  • Travis G Spain
  • Daniel B Brunski
  • Ernest S Sanchez
  • Joel C Keay
  • Mark E Curtis
  • Matthew B Johnson
  • Trevor A Snyder
  • David W Schmidtke
چکیده

Platelet adhesion to the vessel wall during vascular injury is mediated by platelet glycoproteins binding to their respective ligands on the vascular wall. In this study we investigated the roles that ligand patch spacing and size play in regulating platelet interactions with fibrinogen under hemodynamic flow conditions. To regulate the size and distance between patches of fibrinogen we developed a photolithography-based technique to fabricate patterns of proteins surrounded by a protein-repellant layer of poly(ethylene glycol). We demonstrate that when mepacrine labeled whole blood is perfused at a shear rate of 100 s ⁻¹ over substrates patterned with micron-sized wide lines of fibrinogen, platelets selectively adhere to the areas of patterned fibrinogen. Using fluorescent and scanning electron microscopy we demonstrate that the degree of platelet coverage (3-35%) and the ability of platelet aggregates to grow laterally are dependent upon the distance (6-30 μm) between parallel lines of fibrinogen. We also report on the effects of fibrinogen patch size on platelet adhesion by varying the size of the protein patch (2-20 μm) available for adhesion, demonstrating that the downstream length of the ligand patch is a critical parameter in platelet adhesion under flow. We expect that these results and protein patterning surfaces will be useful in understanding the spatial and temporal dynamics of platelet adhesion under physiologic flow, and in the development of novel platelet adhesion assays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion of platelets to surface-bound fibrinogen under flow.

After platelet activation, fibrinogen mediates platelet-platelet interactions leading to platelet aggregation. In addition, fibrinogen can also function as a cell adhesion molecule, providing a substratum for adhesion of platelets and endothelial cells. In this report, we studied the adhesion of platelets to surface-immobilized fibrinogen under flow in different shear rates. Heparinized whole b...

متن کامل

HPA-1 polymorphism of αIIbβ3 modulates platelet adhesion onto immobilized fibrinogen in an in-vitro flow system

BACKGROUND Platelet adhesion and subsequent thrombus formation on a subendothelial matrix at the site of vascular damage play a crucial role in the arrest of posttraumatic bleeding but also in different pathological thrombotic events, such as acute coronary syndrome and stroke. Recently published studies have clearly demonstrated that platelet integri alphaIIbbeta3 is intimately involved in the...

متن کامل

Platelet adhesion onto immobilized fibrinogen under arterial and venous in-vitro flow conditions does not significantly differ between men and women

BACKGROUND Gender-related differences in incidence of arterial thrombosis have been a focus of interest for years. The platelet integrin alphaIIbbeta3 is primarily responsible for the interaction between platelets and fibrinogen and consecutive thrombus growth. In this study, we evaluated platelet adhesion onto immobilized fibrinogen under venous and arterial flow conditions in men and women. ...

متن کامل

Role of ADP receptor P2Y(12) in platelet adhesion and thrombus formation in flowing blood.

ADP plays a central role in regulating platelet function. It induces platelet aggregation via the activation of 2 major ADP receptors, P2Y(1) and P2Y(12). We have investigated the role of P2Y(12) in platelet adhesion and thrombus formation under physiological flow by using blood from a patient with a defect in the gene encoding P2Y(12). Anticoagulated blood from the patient and from healthy vol...

متن کامل

Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force.

The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2012